ModelHub: Lifecycle Management for Deep Learning
نویسندگان
چکیده
Deep learning has improved state-of-the-art results in many important fields, and has been the subject of much research in recent years, leading to the development of several systems for facilitating deep learning. Current systems, however, mainly focus on model building and training phases, while the issues of data management, model sharing, and lifecycle management are largely ignored. Deep learning modeling lifecycle contains a rich set of artifacts, such as learned parameters and training logs, and frequently conducted tasks, e.g., to understand the model behaviors and to try out new models. Dealing with such artifacts and tasks is cumbersome and left to the users. To address these issues in a comprehensive manner, we propose ModelHub, which includes a novel model versioning system (dlv); a domain specific language for searching through model space (DQL); and a hosted service (ModelHub) to store developed models, explore existing models, enumerate new models and share models with others.
منابع مشابه
Optimal mathematical operation of a hybrid microgrid in islanded mode for improving energy efficiency using deep learning and demand side management
Deep learning method is used to predict the future value of load demand. Based on obtained results, a new model based on the forward-backward load shifting and unnecessary load shedding is presented. As well, to increase energy efficiency, excess renewable energy has been used to produce green hydrogen. For this purpose, GAMS optimization software has been used for optimal operation of the micr...
متن کاملDetection of children's activities in smart home based on deep learning approach
Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...
متن کاملDetection of children's activities in smart home based on deep learning approach
Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...
متن کاملMyocardial fibrosis delineation in late gadolinium enhancement images of Hypertrophic Cardiomyopathy patients using deep learning methods
Introduction: Accurate delineation of myocardial fibrosis in Late Gadolinium Enhancement on Cardiac Magnetic Resonance (LGE-CMR) has a crucial role in the assessment and risk stratification of HCM patients. As this is time-consuming and requires expertise, automation can be essential in accelerating this process. This study aims to use Unet-based deep learning methods to automate the mentioned ...
متن کاملA Deep Learning Approach for Predicting Process Behaviour at Runtime
Predicting the final state of a running process, the remaining time to completion or the next activity of a running process are important aspects of runtime process management. Runtime management requires the ability to identify processes that are at risk of not meeting certain criteria in order to offer case managers decision information for timely intervention. This in turn requires accurate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016